Identification of residues in domain III of Bacillus thuringiensis Cry1Ac toxin that affect binding and toxicity.

نویسندگان

  • M K Lee
  • T H You
  • F L Gould
  • D H Dean
چکیده

Alanine substitution mutations in the Cry1Ac domain III region, from amino acid residues 503 to 525, were constructed to study the functional role of domain III in the toxicity and receptor binding of the protein to Lymantria dispar, Manduca sexta, and Heliothis virescens. Five sets of alanine block mutants were generated at the residues (503)SS(504), (506)NNI(508), (509)QNR(511), (522)ST(523), and (524)ST(525). Single alanine substitutions were made at the residues (509)Q, (510)N, (511)R, and (513)Y. All mutant proteins produced stable toxic fragments as judged by trypsin digestion, midgut enzyme digestion, and circular dichroism spectrum analysis. The mutations, (503)SS(504)-AA, (506)NNI(508)-AAA, (522)ST(523)-AA, (524)ST(525)-AA, and (510)N-A affected neither the protein's toxicity nor its binding to brush border membrane vesicles (BBMV) prepared from these insects. Toward L. dispar and M. sexta, the (509)QNR(511)-AAA, (509)Q-A, (511)R-A, and (513)Y-A mutant toxins showed 4- to 10-fold reductions in binding affinities to BBMV, with 2- to 3-fold reductions in toxicity. Toward H. virescens, the (509)QNR(511)-AAA, (509)Q-A, (511)R-A, and (513)Y-mutant toxins showed 8- to 22-fold reductions in binding affinities, but only (509)QNR(511)-AAA and (511)R-A mutant toxins reduced toxicity by approximately three to four times. In the present study, greater loss in binding affinity relative to toxicity has been observed. These data suggest that the residues (509)Q, (511)R, and (513)Y in domain III might be only involved in initial binding to the receptor and that the initial binding step becomes rate limiting only when it is reduced more than fivefold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domain III of Cry1Ac Is Critical to Binding and Toxicity against Soybean Looper (Chrysodeixis includens) but Not to Velvetbean Caterpillar (Anticarsia gemmatalis)

Insecticidal proteins Cry1Ac and Cry2Ac7 from the bacterium Bacillus thuringiensis (Bt) belong to the three-domain family of Bt toxins. Commercial transgenic soybean hybrids produce Cry1Ac to control the larvae of the soybean looper (Chrysodeixis includens) and the velvet bean caterpillar (Anticarsia gemmatalis). The specificity of Cry1Ac is determined by loops extending from domain II and regi...

متن کامل

Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment.

A cadherin-like protein has been identified as a putative receptor for Bacillus thuringiensis (Bt) Cry1Ac toxin in Helicoverpa armigera and plays a key role in Bt insecticidal action. In this study, we produced a fragment from this H. armigera Cry1Ac toxin-binding cadherin that included the predicted toxin-binding region. Binding of Cry1Ac toxin to this cadherin fragment facilitated the formati...

متن کامل

Domain III of Bacillus thuringiensis Cry1Ie Toxin Plays an Important Role in Binding to Peritrophic Membrane of Asian Corn Borer

The insecticidal IE648 toxin is a truncated Cry1Ie protein with increased toxicity against Asian corn borer (ACB). Cry toxins are pore-forming toxins that disrupt insect midgut cells to kill the larvae. However, the peritrophic membrane (PM) is an important barrier that Cry toxins must cross before binding to midgut cells. Previously, it was shown that Cry toxins are able to bind and accumulate...

متن کامل

Aminopeptidase N1 is involved in Bacillus thuringiensis Cry1Ac toxicity in the beet armyworm, Spodoptera exigua

Understanding how insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) interact with their hosts is crucial to fully explain the molecular bases of Bt specificity and insecticidal activity. Previous studies support ATP binding cassette transporters (ABCC2/3) and one cadherin-like protein are Cry1Ac functional receptors in the beet armyworm (Spodoptera exigua). In this study, a c...

متن کامل

Non-Recessive Bt Toxin Resistance Conferred by an Intracellular Cadherin Mutation in Field-Selected Populations of Cotton Bollworm

Transgenic crops producing Bacillus thuringiensis (Bt) toxins have been planted widely to control insect pests, yet evolution of resistance by the pests can reduce the benefits of this approach. Recessive mutations in the extracellular domain of toxin-binding cadherin proteins that confer resistance to Bt toxin Cry1Ac by disrupting toxin binding have been reported previously in three major lepi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 65 10  شماره 

صفحات  -

تاریخ انتشار 1999